
1920 IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 5, MAY 2007

A QR Accelerated Volume-to-Surface Boundary
Condition for the Finite-Element Solution

of Eddy-Current Problems
Daniel A. White, Benjamin J. Fasenfest, Robert N. Rieben, and Mark L. Stowell

Defense Sciences Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94551 USA

We are concerned with the solution of time-dependent electromagnetic eddy-current problems using a finite-element formulation on
three-dimensional unstructured meshes. We allow for multiple conducting regions, and our goal is to develop an efficient computational
method that does not require a computational mesh of the air/vacuum regions. This requires a sophisticated global boundary condition
specifying the total fields on the conductor boundaries. To meet this requirement, we propose a volume-to-surface boundary condition
based on the Biot–Savart law. We found the Biot–Savart approach to be very accurate. In addition, this approach can be accelerated via
a low-rank QR approximation of the discretized Biot–Savart law.

Index Terms—Biot–Savart law, computational electromagnetics, eddy currents, electromagnetic diffusion, low-rank approximation,
Maxwell’s equations, parallel processing.

I. INTRODUCTION

I N THIS PAPER, we present a finite-element method for
solving the multiply connected eddy-current problem. While

much of this presentation is applicable towards frequency-do-
main analysis, our emphasis here is on transient simulation. Var-
ious formulations for the eddy-current equations exist and have
been extensively reviewed and studied in the literature. These in-
clude formulations which solve for the electric field (the field
formulation) [1]–[3], the magnetic field (the field formula-
tion) [4], [5] or for the potential field (the - potential formu-
lation) [6]–[9]. Each formulation has its advantages and disad-
vantages for problems in computational electromagnetics. How-
ever, it has been shown that when using and
conforming finite-element methods, there is no difference in ac-
curacy for these three formulations, even for secondary quanti-
ties such as and [10]. The difference between the three for-
mulations, which use primary field variables , , and , re-
spectively, is in the boundary conditions and the source terms,
and is therefore simply a matter of which formulation is most
convenient for a given electromagnetics problem.

The most difficult electromagnetic diffusion problems en-
countered in practice are those that involve multiple conductors
separated by a nonconducting region, the so-called multiply
connected eddy-current problem. While the currents are zero in
the nonconducting region clearly the fields are not, and some
method must be used to account for these fields. One approach
is to simply mesh the nonconducting region and use a small
value of conductivity in this region. While seemingly a crude
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approach, it works well in practice for many problems, for
example using a conductivity at least 10 times smaller than the
metal results in fields correct to within the discretization error
[7], [11]. The difficulty with this is twofold; one is the large
number of unknowns and the second is matrix ill-conditioning.
More sophisticated approaches include forming a magnetostatic
problem in the nonconducing region using either the vector or
scalar magnetic potential and coupling the two finite-element
solutions [6], [12], or employing a surface integral equation to
correctly model the global boundary condition [1]–[3].

In the context of Galerkin approximations of electromag-
netics partial differential equations (PDEs), the choice of the
finite-element space plays a crucial role in the stability and
convergence of the discretization. For instance, in numerical
approximations of the magnetic and electric field intensities,

conforming finite-element spaces (or edge elements)
are preferred over traditional nodal vector spaces since they
eliminate spurious modes in eigenvalue computations and they
prevent fictitious charge buildup in time-dependent computa-
tions. The lowest order conforming basis functions
were developed by Whitney [14] before the advent of finite-el-
ement programs. Arbitrary order versions were introduced by
Nédélec [15], [16] as a generalization of the mixed finite-el-
ement spaces introduced by P. A. Raviart and J. M. Thomas
[17] for conforming methods. Application of these

and basis functions toward electromagnetics
is becoming quite popular and applications can be found in
several recent textbooks [18], [5], [19].

In this paper, we focus on the field formulation for the
eddy-current problem using basis functions. We as-
sume a given initial condition (which may be zero) and the
problem is driven by either a time-varying voltage or a pre-
scribed time-varying current. We allow for multiple conducting
regions separated by air. Each individual conducting region is
assumed to be homogeneous. The conductors are nonmagnetic.
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TABLE I
ELECTROMAGNETIC QUANTITIES AND THEIR ASSOCIATED

DIFFERENTIAL FORMS

Our targeted applications which satisfy these assumptions in-
clude induction heating, metal forming, and helical magnetic
flux compression generators. Boundary conditions must be ap-
plied on the conductor surfaces, and here we propose to com-
pute the surface field (for the inhomogeneous Dirichlet con-
dition) or field (for the inhomogeneous Neumann condition)
by a direct discretization of the Biot–Savart law. Compared to
surface integral equation methods this approach does not solve
an integral equation, only the evaluation of an integral is re-
quired. We do not solve for surface currents and hence need not
be concerned with loop-star or spanning-tree processing for sup-
pression of irrotational surface currents. The disadvantage of the
Biot–Savart law approach is that it requires a volume-to-surface
computation and hence can be expensive. But this computation
can be accelerated using a low-rank QR approximation. Low-
rank QR approximation has been demonstrated to be effective
at accelerating a variety of electromagnetic integral equations
[20]–[23]. We do not prove that the low-rank QR approximation
is superior to multipole expansions, panel methods, or other ac-
celeration schemes; we employ the low-rank QR approximation
because the algorithm is independent of the Green’s function
and can thus be applied to either form of the Biot–Savart law.
Our proposed boundary condition algorithm is verified by com-
paring to exact analytical solutions and by comparing to simply
using a large mesh of the air/vacuum region.

II. ELECTROMAGNETIC DIFFUSION EQUATION

When working with multiple finite-element spaces, it be-
comes convenient to use the notation of differential forms as a
way of categorizing the various field quantities from Maxwell’s
equations and the subsequent finite-element spaces used to
discretize them. In addition, the calculus of differential forms
provides the necessary transformation rules which allow com-
plicated basis functions to be derived on a reference element
and then mapped to global mesh elements. Table I lists various
physical quantities in electromagnetics and their associated
differential form.

In electromagnetics we have the electric and magnetic fields
, , the electric and magnetic flux densities , and the

constitutive relations

Here, we write Maxwell’s Equations in terms of and

(1)

(2)

(3)

(4)

with appropriate boundary conditions and initial conditions un-
derstood. Note that is an independent current source term,
which may or may not exist for every problem. In all of our
subsequent formulations, the material properties are free
to be symmetric positive definite tensor functions of space, but
we impose the restriction that they are linear time invariant.

Now consider solving Maxwell’s equations within a good
conductor. A good conductor is defined by the condition

(5)

Note that (5) depends not only on the material properties
and , but also on the time rate of change of . When (5) is
satisfied, Maxwell’s equations can be simplified by neglecting
the term altogether, the so-called low-frequency
approximation, diffusion approximation, or eddy-current ap-
proximation. The diffusion approximation is not valid for most
radio-frequency (RF), microwave, or optics problems, but is
reasonable for low-frequency electromagnetic (EM) waves in
plasmas or in the earth, as well as for engineering design prob-
lems such as electric motors, transformers, induction heating,
metal forming, and rail-guns. A detailed, mathematical analysis
which justifies the approximation is given in [24].

A. The - Potential Formulation

The divergence condition (4) implies that , where
is a magnetic vector potential. This in turn implies that the

electric field is given by , where is
an electric scalar potential. Using these two potentials, along
with the gauge condition , the potential diffusion
equations in a three-dimensional domain are

(6)

(7)

(8)

(9)

(10)

We refer to and as the primary field variables and , ,
and as the secondary variables, with the computation of the
secondary variables optional. The inhomogeneous Dirichlet
boundary conditions are given by

on (11)

on (12)
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and in the Galerkin finite-element method these will appear as
constraints on the solution and will be satisfied exactly. The
inhomogeneous Neumann boundary conditions are given by

on (13)

on (14)

and in the Galerkin finite-element method these will appear as
equivalent sources and will be satisfied in the weak sense. There
are divergence constraints on both the primary and secondary
fields, namely

(15)

(16)

and these will be satisfied automatically by the discretization
method. No penalty term or projection step will be required.

III. FINITE-ELEMENT DISCRETIZATION

FEMSTER is a class library of finite elements used for the
results in this paper; see [25]–[27] for details. It provides dis-
crete numerical implementations of the concepts from differen-
tial forms (tangent vectors, wedge product, exterior derivative,
hodge-star operator, etc.). The language of differential forms
has long been used for elucidating the laws of electromagnetics
in a coordinate system free manner [28]–[30]. We have found
this language to be extremely useful in providing the abstract
software foundation for FEMSTER. In standard finite-element
language, FEMSTER contains all the data structures and op-
erations required to compute local finite-element matrices: ele-
ments (tetrahedrons, hexahedrons, prisms), basis functions (or
shape functions), quadrature rules, linear forms, and bilinear
forms. FEMSTER provides the gradient, curl, and divergence
operators, as well as the div-grad, curl-curl, and grad-div op-
erators. Note that arbitrary partial derivative operators are not
provided, as these do not fit nicely into the framework of differ-
ential forms, and fortunately are not needed for computational
electromagnetics. The basis function class hierarchy contains
four forms of basis functions, simply called 0-forms, 1-forms,
2-forms, and 3-forms. Derived from each of these classes are
subclasses for the element types tetrahedron, hexahedron, and
prism, and derived from each of these types is a further special-
ization for the degrees of freedom, i.e., interpolatory, spectral,
hierarchical, etc. The critical step in using FEMSTER is to de-
cide which form should be used for each physical quantity. The
essential properties of the forms are now summarized.

0-forms are continuous scalar basis functions that have a well-
defined gradient. These basis functions are a finite subspace of

and are suitable for discretization of the electric po-
tential , temperature , etc. The basis functions are dimen-
sionless, hence the degrees of freedom have the same units as
the field being approximated. If the field is temperature, the de-
grees of freedom have units of temperature. The gradient of a
0-form basis function can be represented, exactly, as a combi-
nation of 1-form basis functions, i.e., .

1-forms are vector basis functions with continuous tangential
components across elements, but discontinuous normal compo-
nents. They have a well-defined curl, but do not have a well-de-
fined divergence. These basis functions are a finite subspace

of . The basis functions have units of m . For ex-
ample, the electric field has units of Volts m and the degrees-of-
freedom will therefore have units of Volts. It is a simple matter
to integrate 1-forms along the edges of a mesh, but surface in-
tegrals are not well defined. These basis functions are ideally
suited for the electric field , the magnetic field , the mag-
netic vector potential , etc. The curl of a 1-form basis function
can be represented, exactly, as a combination of 2-form basis
functions, i.e., . The null space of the curl oper-
ator on 1-forms is, exactly, the space of gradients of 0-forms,

implies , for simply-connected regions.
2-forms are vector basis functions with continuous normal

components across elements, but discontinuous tangential com-
ponents. They have a well-defined divergence, but do not have
a well-defined curl. These basis functions are a finite subspace
of . The basis functions have units of m . For example,
the electric current density has units of Amperes m ; therefore,
the degrees of freedom have units of Amperes. It is a simple
matter to integrate 2-forms over surfaces of a mesh, but line in-
tegrals are not well defined. These basis functions are ideally
suited for the electric flux density , the magnetic flux den-
sity , current flux density , etc. The divergence of a 2-form
basis function can be represented, exactly, as a combination of
3-form basis functions. The null space of the divergence oper-
ator on 2-forms is, exactly, the space of curls of 1-forms.

3-forms are discontinuous scalar basis functions. They cannot
be differentiated. They can be integrated over a volume, but not
over a surface or a line. These basis functions are a finite sub-
space of . The basis functions have units of m . For ex-
ample, charge density has units of Coulombs m and the de-
grees of freedom will therefore have units of Coulombs. These
basis functions are ideally suited for the electric charge density

, the energy density , etc.
FEMSTER computes the following “mass,” “stiffness,” and

“derivative” matrices, where the superscript de-
notes the degree of the form

(17)

(18)

(19)

Note that the operator denotes Gradient, Curl, or Divergence,
for , respectively. The “mass” matrices and the
“stiffness” matrices are square and map -forms to -forms,
the “derivative” matrices are rectangular and map -forms to

-forms. Note that is the Hodge operator which maps
-forms to -forms, and is associated with material properties

such as electric conductivity and magnetic permeability. It can
be shown that

(20)

(21)

where is a “topological derivative” matrix. This matrix
is the discretization of the exterior derivative operator from
differential geometry, . This matrix depends
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upon the mesh connectivity, but is independent of the nodal co-
ordinates. It does not involve an integral over the element, and it
does not involve any material properties. While seemingly ab-
stract, it is enormously valuable in practice. Given an -form
quantity with basis function expansion

(22)

and an -form quantity with basis function expansion

(23)

the exterior derivative (Gradient, Curl, Divergence for ,
, and , respectively) is given by

(24)

It can be shown that
(25)

(26)

which are the discrete versions of . In terms of
standard vector calculus, these matrix relations correspond to
the identities and , respectively.
These identities are satisfied in the discrete sense, exactly (to
machine precision), for any mesh and any order basis function.

FEMSTER contains some additional miscellaneous function-
ality. In some circumstances it is necessary to convert an -form
to a form, i.e., a Hodge-star operation. A classic ex-
ample is converting a “cell-center” quantity to a “nodal” quan-
tity. In our finite-element setting the Galerkin procedure pre-
scribes rectangular matrices of the form

(27)

which produces optimal (in the least-square error sense) Hodge-
star operators for arbitrary order basis functions.

A. Semi-Discrete Potential Diffusion Equations

As per Table I we employ 0-form basis functions for ,
1-form basis functions for and , and 2-form basis func-
tions for and , leading to the following basis functions
expansions:

(28)

(29)

(30)

(31)

(32)

with the th degree of freedom for field . The integers
refer to the dimensions of the discrete -form spaces,

and for lowest order basis functions these correspond to the
number of mesh nodes, edges, and faces, respectively.

We employ the Galerkin variational procedure to convert the
PDEs (6)–(10) to a semi-discrete system of equations, yielding

(33)

(34)

(35)

(36)

(37)

where the matrices have been defined above. The divergence
constraints are given by

(38)

(39)

(40)

and from the identities (25) and (26) these constraints are im-
plicitly satisfied for all time, assuming the initial conditions and
the source terms are divergence free. The divergence constraints
(38) and (39) are often referred to as “weak” or “variational”
since they are derived from the integration-by-parts formula

(41)

where is the field of interest ( or ) and is a “test func-
tion” which is zero on the boundary . These divergence con-
straints are thus not enforced on the boundary; the divergence
of the fields on the boundary is determined by the the choice
of Dirichlet and Neumann boundary conditions on and as
described above. Finally, we should note that the electrostatic
potential and the independent current source may not exisit
for all problems of interest; these terms are included here for
generality. Also, while it is in principle possible to employ pe-
riodic or symmetry boundary conditions, this is not investigated
here, as it would require the use of more complicated Green’s
functions in the Biot–Savart law. The computational mesh must
therefore span all the metal regions.

B. Boundary Conditions

The discrete version of the Dirichlet boundary condition (12)
is simply to constrain degree-of-freedom values on the sur-
face to known values. In finite-element terminology this is an
essential boundary condition. Since the -field update equation
involves the solution of a linear system, this constraint is part of
the matrix solve step. We briefly review our approach for imple-
menting essential boundary conditions here.

Consider the linear system of equations and
assume that some subset of the solution vector is subject to
point constraints of the form . For ease of pre-
sentation the solution vector is sorted into unconstrained and
constrained subvectors, in our application the unconstrained
components correspond to internal degrees of freedom and the
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constrained components correspond to boundary degrees of
freedom. The system of equations can be written in 2 2 block
form as

(42)

The approach is to modify the matrix and the right-hand-side
vector in a manner that preserves the symmetry of the original
system. The solution is given by

(43)

In practice, diagonally scaled conjugate gradient is effective at
solving this system of equations.

The discrete version of the Neumann boundary condition (14)
is different. In the Galerkin procedure integration-by-parts is
performed on the Curl-Curl operator

(44)

The surface integral can be expressed as

(45)

clearly this is an effective surface current source
that is added to the right-hand side of (34). In finite-element ter-
minology the special case of on the boundary is referred
to as a natural boundary condition; this is the boundary condi-
tion that is naturally satisfied by the variational formulation. It is
also referred to as a weak boundary condition; it is not satisfied
exactly but is instead satisfied only to within the approximation
error. In the next section, a volume-to-surface integral is pro-
posed to determine and on the boundary.

IV. BIOT–SAVART LAW

Our goal is to solve the - equations in the metal regions
using the -conforming finite-element method described
in Section III above. Let a metal-air interface be denoted by .
On each metal region, either or must be speci-
fied on . In the metal region, the gauge condition
is used as this is the the condition that is automatically satis-
fied by the -conforming finite-element discretization as
discussed above. In the air region we have , there are no
currents, and the fields are quasi-static in nature. By quasi-static
we mean that the the fields are time varying, but that at every in-
stant of time we have , i.e., the fields
have the spatial dependence of a static field. We propose solving
the electromagnetic diffusion - (6)–(10) using the above fi-
nite-element method in the metal regions only, and using the
Biot–Savart law to compute the fields on the surface only.
The key issues are the stable coupling of the Biot–Savart law
with the the finite-element discretiation, and the efficiency of

the resulting hybrid finite-element boundary-element system of
equations, and these issues are discussed here.

The law of Biot and Savart is given by

(46)

where is a known volume current density at the source
point , and is the desired magnetic field at the observa-
tion point . A related equation for the magnetic vector potential

is given by

(47)

Equation (47) is the fundamental solution to the equation
in an infinite homogeneous medium. Tech-

nically, (47) is the fundamental solution to , but
since in the air region, the gauge condition is
used in the air region, and the standard vector identity

results in (47). Equation (46) follows
directly from . We assume that is a constant
scalar over the entire problem; we restrict ourselves to problems
involving nonmagnetic conducting materials. Inhomogeneous
magnetic materials could be accounted for by adding effective
surface currents on material interfaces, but this is not considered
here.

As discussed in Section III, the finite-element method re-
quires only the tangential component of (or ) be specified
on , the normal component of (or ) on is not needed
and is not computed. Since the fields computed in the air re-
gion via the Biot–Savart law are continuous, we are restricted to
problems in which the tangential component of is continuous
on . In general the normal component of is discontinuous
across , but this does not pose a computational problem since
the normal component of on is not needed and is not com-
puted. Note that if the problem of interest consisted of two dis-
similar conductors touching each other, and both of these con-
ductors simultaneously touching the air (a “triple point”), the
current density would be continuous but the tangential con-
ponent of the -field would posses a jump discontinuity due to
our choice of gauge; this is illustrated in Fig. 1. For this latter
case, the -field Biot–Savart law (47) cannot be used, and (46)
is the more appropriate boundary condition, as the tangential
component of the -field is continuous regardless of conduc-
tivity. As stated in the Introduction, in this paper we are focused
on mutiple homogenous conducting regions separated by air (no
“triple points”), and for this class of problem the field is con-
tinuous in the metal, the field is also continuous in the air,
and it is possible to enforce tangential continuity of these fields
by solving a linear system of equations.

Employing basis function expansions for and , multi-
plying by 1-form test functions and integrating over the
surface gives

(48)
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Fig. 1. Continuity of the tangential component of ~A on the air-metal interface. The graphics show J and A in the metal directly below the air-metal interfrace. In
each case there is no current flow across the air-metal interface. In the left and middle figure, the tangential component of ~A is continious at the air-metal interface.
In the right case, the tangential component of ~A is not continous at the “triple point,” and the ~A-field Biot–Savart law cannot be applied.

where and are vectors of degrees of freedom, and the ma-
trices are given by

(49)

(50)

The matrix is a square “mass matrix” defined only over
the surface; it is extremely sparse and well-conditioned and is
not an issue computationally. The matrix is a completely full
rectangular matrix that maps volume currents to surface fields.
A similar equation for the -field field is given by

(51)

where

(52)

The computation of the Biot–Savart matrices involves sin-
gular and near singular integrals. The surface integration is per-
formed using standard Gaussian quadrature points for each sur-
face element. The volume integration uses an adaptive inte-
gration rule, which varies the order of the Gaussian quadra-
ture based on the distance between the source point and the
observation point . When the surface element containing
is a face of the volume element containing , a highly ac-
curate height-based singularity cancellation quadrature rule is
used [31].

Here we consider the coupling of the finite-element equations
(33)–(37) with the -field Biot–Savart equation (51). An im-
plicit backward-difference method is used to update the degrees

of freedom and simultaneously

(53)

(54)

(55)

In the above equation, the voltage and the independent current
source are analytical functions evaluated at time . Note
that the third equation follows from the definition of total elec-
tric current density

(56)

It is instructive to express the update equation in matrix form.
The result is shown in (57) at the bottom of the page. The volume

-field and the surface -field degrees of freedom have been
separated for clarity. This system of equations can be solved
using an iterative method such as GMRES. But as written this
linear system is poorly conditioned. First, note that and have
different units, they differ by a factor . Therefore, every
column of the matrix that multiplies should be scaled by .
Second, note that some of the matrix entries involve
while others involve . This can be fixed by scaling both
sides of the Biot–Savart law by . This scaling can be written
in standard preconditioner form as shown in (58) at the bottom
of the next page.

For this method to be stable we must examine the eigenvalues
of the amplification matrix. We do not present an analytical

(57)
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proof of stability, but we have numerically computed the com-
plete set of eigenvalues of the amplification matrix for several
problems, and with different values of , and in each case the
eigenvalues are within or on the unit circle; hence the method
is stable. The eigenvectors corresponding to eigenvalues on the
unit circle correspond to steady-state solutions of the diffusion
equations. It should be noted that we investigated lagging the
Biot–Savart law in time, i.e., replacing with in (54). This
has the advantage of moving the Biot–Savart matrix from the
left-hand side to the right-hand side. Unfortunately, this method
was unstable for small time steps. This method may be appli-
cable if the goal is to quickly reach some steady-state solution,
but it is not applicable if the goal of the simulation is to resolve
the diffusion dynamics.

There is an issue with the independent current source .
We allow for this source because it is convenient for many
problems. However, this source cannot be arbitrary, it is a
requirement that this current source be in the range of the

operator. For example, if the user specifies
some current , where is arbitrary
and range , the numerical solution will
exhibit unbounded linear growth. This linear growth term

is a solution of , and is not an artifact of
the proposed finite-element method, it is a valid mathematical
solution of the model equations. To eliminate this, care must
be taken to ensure the independent current source is divergence
free.

V. LOW-RANK QR ACCELERATION

In this section, we develop the hierarchical low-rank QR ap-
proximation of dense matrices representing the Biot–Savart law;
the same algorithm is applicable to either (46) or (47). The al-
gorithm has been implemented and tested on a parallel com-
puter consisting of identical processors, e.g., a cluster of PCs.
For uniprocessor computations the parameter can be consid-
ered an arbitrary partitioning of the problem, e.g., the number
of computational threads.

We assume that the volume has been partitioned into par-
titions, with each partition having an equal number of volume
elements. The volume elements are distributed via the parti-
tioning. The surface is also partitioned into equally sized
surface partitions. Note, however, that the surface elements are
not distributed via the surface partitions; each processor can ac-
cess the entire surface mesh. The Biot–Savart matrix is then de-
composed into a block matrix, with every block

representing the interaction of sur-
face partition with volume . The th processor computes
blocks , i.e., a column of blocks. Note that the
matrix is decomposed via a partitioning of elements, hence the

matrices are overlapping in DOF space. For the highest-
level partitioning of the elements we employ a graph-based al-
gorithm [32]. This may not be optimal for compression of the
Biot–Savart matrix, but it is optimal for the FEM part of the
problem. Regardless of the particular partitioning algorithm, the
key point is that if the partitions and are well-separated
then the submatrix will have a low-rank QR decomposi-
tion. The procedure for computing the low-rank QR decompo-
sition is described in Section V-A. We define “well-separated”
as follows: the bounding spheres for the element partitions
and are computed, if the bounding spheres do not intersect
then the partitions are considered well-separated and a low-rank
QR representation of is computed. We employ a recur-
sive procedure for computing when partitions and
are not well-separated. This results in a hierarchical representa-
tion for . If and are not well separated, is divided
into eight equally sized subpartitions, is divided into four
equally sized subpartitions, and the “well-separated test” is ap-
plied to the subpartitions and .
A space-filling curve algorithm is used for creating the subpar-
titions. The process is applied recursively, with a low-rank QR
representation computed for well-separated subpartitions. The
recursion is halted when a volume subpartition contains fewer
than some number of elements, for example 64 elements. If at
the lowest level of recursion the interaction is not well separated,
it is simply represented by a dense matrix. This is illustrated in
Fig. 2.

No parallel communication is required in the construction of
the hierarchical Biot–Savart matrix; each processor has the ele-
ments that it needs to perform the integrals. Each processor has
the same amount of work, hence the computation of the integrals
is load balanced. Note, however, that in the low-rank QR ap-
proximation the rank is computed dynamically, and the rank
depends upon the geometry. Hence, the application of the hierar-
chical Biot–Savart matrix, i.e., the matrix-vector multiplication

, may not be perfectly load balanced. Also note that the
application of the hierarchical Biot–Savart matrix does require
parallel communication. This communication is as follows: 1)
each processor does a gather operation to get the values of
that it needs; 2) each processor loops over the sub-matrices

and computes ; and 3) each pro-
cessor participates in a global reduction on .

A. Low-Rank QR Decomposition

Every matrix has a QR decomposition, , where
is a unitary matrix (orthonormal columns), and the matrix
is an upper triangular matrix. These QR decompositions are

standard in computational linear algebra as they are key steps
in solving least-squares problems and eigenvalue problems.
Given a matrix , there are well-known algorithms such as

(58)
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Fig. 2. Hierarchical partitioning of the Biot–Savart matrix. The highest level of
partitioning is based on the number of processors. Some of the the interactions
at any level l will be full rank (black boxes), and these interactions are subparti-
tioned by decomposing the corresponding subvolume and subsurface to create
Level l + 1.

Householder, fast Givens, and modified Gram–Schmidt for
computing the QR decomposition [33]. For our application,
when and are well separated the matrix will have a
low-rank decomposition

(59)

where is the rank. Clearly, if and are large and is small,
the QR decomposition represents a significant compression of
the matrix. We do not want to form the entire and then
compress it, rather we sample the matrix by picking rows and
columns of , where is some predetermined number based
on an estimate of the rank. Several algorithms have been pro-
posed for picking the sampled rows and columns. The proce-
dure for picking the sampled rows and columns is ad hoc, the
procedure that we employ is described in Section V-B, and is
similar to an algorithm that has been successfully applied to
electrostatic [21] and frequency-domain [22] boundary integral
equations. The sampling procedure is solely linear algebra, the
implementation is independent of the particular Green’s func-
tion, finite-element basis functions, etc., and hence can be used
for either (48) or (51). Note that while the implementation of the
low-rank QR algorithm is independent of the particular Green’s
function and finite-element basis functions, the performance of
the algorithm does indeed depend upon these particulars. For the
low-rank QR algorithm to be robust we must have greater than
the expected rank, i.e., we over-sample the Biot–Savart matrix.
The algorithm for computing and is as follows.

1) Form the sampled column matrix and the sampled
row matrix .

2) Compute the rank-revealing QR decomposition
using LAPACK routines DGEQPF

and DORGQR. The LAPACK subroutine library is public
domain and is described in [34]. The rank is determined
by the criteria where thresh is a
threshold value. Keep only columns of , denote this as

, and discard .
3) Form a new matrix by taking rows of , the

exact same rows as used to construct .
4) Compute the least-squares solution to

using LAPACK routine DGELSS.
At this point we have the desired matrices and
which approximate . To perform a matrix-vector mul-
tiplication with the compressed matrix, it is necessary to in-

Fig. 3. Rank versus distance. The Black curve is the maximum rank, which is
used to determine s. The gray curve is the minimum rank. This data is for a
thresh of 0.001.

clude the permutations due to the column and row sampling,
, where and are

permutation matrices. The quality of the approximation, and
the amount of compression (the rank ), are determined by the
value of thresh used in Step 2 above. Our approach, being based
on highly tuned LAPACK routines, is efficient both in terms of
FLOPS and memory usage. The complexity of a single QR de-
composition is , using a fixed value of yields
a linear complexity in and . In our particular implementation
the cost of computing the sampled rows and columns dominates
over the cost of the LAPACK routines. This obviously depends
upon the accuracy of the quadratures employed and on the data
structures used to access the elements, and hence may not be
true in all implementations.

The two key parameters in the QR decomposition are the
threshold used to determine the rank in Step 2, and the number
of sampled rows and columns in Step 1. In practice we have
found to yield acceptable results,
meaning the the error in the QR compression is less than the
intrinsic error of the finite-element computation. Of course this
is application dependent. For the parameter we use a table
lookup, where the argument is the normalized distance between
the volume and surface regions. This normalized distance is de-
fined as the distance between the centroids of the two bounding
spheres divided by the sum of the radii of the spheres, a value of

means that the two bounding spheres are just touching. A
table of computed ranks versus distance, generated by running
a dozen different problems, is shown in Fig. 3.

B. Row and Column Sampling

The procedure for computing the sample row matrix
and column matrix is important; the goal is to pick the
most independent rows and columns. An ad hoc procedure that
works well is described here. The process is initiated by simply
computing the first, middle, and last row of , and the first,
middle, and last column. These will be independent based on
the fact that the volume and surface elements are sorted via a
space-filling curve. The general step for computing a new row,
given previously computed rows and columns, is as follows.

1) Define the matrix as the intersection of and
.

2) Define the vector as the th row of .
3) Define the vector as the th row of .
4) Define the angle as the angle between vectors and

.
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5) The next row to compute is given the integer defined
by , i.e., find the vector that is
“most different” from all vectors .

This procedure scans the existing sampled data and deter-
mines a good candidate for the next row to compute. The same
procedure is used for determining what column to compute next.
We do not claim that the procedure is optimal; in fact, the reason
for requiring oversampling, i.e., , is that the sampling pro-
cedure is imperfect. If we employed , where was the
actual rank, the low-rank QR approximation would likely not
satisfy the required error tolerance thresh.

VI. COMPUTATIONAL RESULTS

A. Spherical Shell of Current

In this section, (57) is solved for an eddy-current problem
with an exact analytical solution to verify the validity of the ap-
proach. For this verification experiment, we construct the exact
solution to the problem of a spherical shell of current. There
exists a well-known exact analytical solution to the problem of
computing the magnetic field due to a sphere of uniform mag-
netization , i.e., a spherical magnet [35]. The -field due to
a given magnetization is given by

(60)

Note that in the first term is an effective volume
current density, and in the second term is an effec-
tive surface current density. Therefore, the problem of a sphere
of uniform is equivalent to the problem of an infinitely thin
spherical shell of current. We begin with this solution, and we
integrate with respect to to obtain the solution to a finite thick-
ness spherical shell of uniform current density. In spherical co-
ordinates , the current source is given by

and the steady-state -field is given by

where and denote the inner and outer radii of the spherical
shell, respectively. A time-dependent solution can be created
by constructing a current source that smoothly ramps up to the
steady-state value. In this verification simulation, we use the
ramp function

(61)

where denotes the error function. If we let and denote
the steady-state solution, then the full time-dependent solution
is given by

(62)

(63)

We use and in the spherical shell. We
choose and s for the ramp function. The
initial condition is , this is acceptable since the exact

-field is essentially zero due to our choice of ramp function
parameters. The spherical shell has m and m.
The computational mesh had a total of 6000 elements, this is for
the metal region only, as the fields in the air are accounted for
by the Biot–Savart law. We used for 100 time steps.
The GMRES algorithm was used to solve the linear system at
each time step, and approximately 330 iterations were required
for a tolerance of .

Fig. 4 shows the geometry and the computational mesh, with
a section removed so that the interior can be seen. Figs. 5 and 6
show a slice of the steady-state -field and -field, respectively.
Figs. 7 and 8 show a slice of the the steady-state -field vectors
and -field error, respectively. The peak relative error (error
energy per element divided by energy per element) was 0.001,
and the total relative error (total error energy divided by total
energy) was , which is excellent. Fig. 9 shows the source
current, the eddy current, and the total current versus time for a
particular mesh element. The chosen time step was
significantly less than the diffusion time s. This
was not required for stability, as the method is unconditionally
stable; rather this was required in order for the computed eddy
currents to be time-accurate. Finally, Fig. 10 shows the time
history of the computed -field versus the exact -field for a
selected mesh element. Note that the agreement is excellent.

B. Coaxial Rings

This computational experiment is of a set of three coaxial
metal rings, this experiment verifies the performance of the pro-
posed algorithm for multiple conductors. The middle ring is
driven with a prescribed electric current density, which gener-
ates a magnetic field, which in turn induces eddy currents in the
other conductors. This problem does not possess an exact ana-
lytical solution, instead we compare the Biot–Savart approach
to a pure finite-element approach that employs meshing a large
region of air surrounding the conductors. The air region extends
out a distance of 4 radii. The air region is large enough so that
we can assume on the outer boundary. The compu-
tational mesh is shown in Fig. 11. We used and

for the metal rings. For the FEM with Air approach we
solved (33)–(37) using a value of in the air.

For each case all the fields were initialized to zero. The
problem was driven by a constant current density in the middle
ring of
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Fig. 4. Computational mesh of the spherical shell, with a portion removed for
clarity.

Fig. 5. Slice showing the steady-state ~A-field magnitude.

that was turned on at . For each case a time step of
was used for 300 steps. The steady state -field and

-field are shown for the FEM with Air model in Figs. 12 and
13. These results are compared to the steady-state results for
the Biot–Savart approach. Examining the numerical value of the
fields in the metal for the two cases, the worst case difference
between the two cases was 1.6% which is very good. It is quite
possible that the FEM with Biot–Savart law is the more accurate
result, as this model does not force the fields go to zero after a
distance of 4 radii.

At early times there are large eddy currents in the rings, at
later times the eddy currents decay to zero, leaving no current
in the top and bottom ring and constant current in the middle
ring. The computed currents are shown in Fig. 14, with excel-
lent agreement between the FEM with Air approach and the
Biot–Savart approach. The -field increases with the expected

Fig. 6. Slice showing the steady-state ~B-field magnitude.

Fig. 7. Slice showing the steady-state ~B vectors.

rise time as shown in Fig. 15, again with excel-
lent agreement between the two methods.

The FEM With Air mesh consisted of 2 064 384 elements,
and the problem was solved using 64 parallel processors. For
the FEM With Air approach there were over 7 million degrees
of freedom; diagonally scaled Conjugate Gradient was used to
solve the linear system with on average 650 iterations per time
step. The Biot–Savart approach required meshing only the metal
rings using 20 736 elements. There were fewer than 70 000 de-
grees of freedom; GMRES was used to solve the linear system
with on average 390 iterations per time step. The Biot–Savart
matrix was a dense 27648 69120 matrix that was compressed
by a factor of 52 using the hierarchical low-rank QR com-
pression of Section V. A threshold of 1.0e-3 was used for the
QR compression. It is interesting to note that the hierarchical
QR decomposition resulted in 832 dense matrices (near inter-
actions) and 3842 QR matrices (far interactions), these with an
average rank of 15. The memory usage was balanced at approxi-
mately 30 MWords for both the dense and the QR matrices. This
indicates that increasing the QR threshold, while compressing
the QR matrices further, would not have a significant impact on
the overall compression. It is difficult to directly compare the
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Fig. 8. Slice showing the steady-state L error per element in the ~B-field. The
error is largest where the field varies most rapidly, as expected. The peak error
was on the order of 10 .

Fig. 9. Time-history plot of the �-components of the currents for a selected
mesh element in the middle of the shell. As the independent current source
ramps up, so does the induced eddy current but in the opposite direction.

CPU times for the two different methods, since the FEM With
Air problem was run on 64 processors while the Biot–Savart ap-
proach was run on 12 processors. Defining the total time as (wall
clock time) (number of processors) the Biot–Savart approach
was better than 4 faster. If we were to employ the Biot–Savart
approach without the heirarchical low-rank QR compression, it
would be significanlty more expensive then the FEM With Air
approach due to the dense 27648 69120 matrix. Examining
the computational cost of computing the heirarchical low-rank
QR decomposition in more detail, we note that the cost of the
LAPACK subroutines (Steps 2, 3, and 4 in Section V-A) repre-
sented only 3% of the CPU time, the bulk of the CPU time is
spent in computing the sampled row and column matrices (Step
1 in Section V-A). Sampling the Biot–Savart matrix is expen-
sive to compute partly due to the high accuracy quadrature rules
we employ, and partly due to intrinsic inefficiencies of the C++

Fig. 10. Time-history plot of the computed ~A-field and the exact ~A-field for a
selected mesh element in the middle of the shell, showing excellent agreement
and verifying the validity of the approach.

Fig. 11. Computational mesh of the coaxial rings problem. Note that only the
metal is shown, for the FEM with Air model the computational mesh was ex-
tended out to a distance of 4 ring radii.

Standard Template Libary routines that are employed to provide
mappings between degrees of freedom and elements.

C. Additional QR Results

The results in Sections VI-A and VI-B demonstrate that the
implicit hybrid finite-element Biot–Savart algorithm is an accu-
rate method for solving transient eddy-current problems. In this
section we summarize additional results on the performance of
the hierarchical low-rank QR compression of the Biot–Savart
matrix. In [20], [21], and [23] it is argued that a single-level
QR approximation is and a multilevel QR is asymp-
totically . While we use a slightly different parti-
tioning algorithm due to our desire for a simple parallelization,
we should expect comparable performance. We ran 16 different
simulations, ranging from 3000 to 450 000 volume unknowns.
These simulations consisted of four problems (spherical shell,
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Fig. 12. A-field contour for the FEM with Air model. The plot is a slice through
the middle of the geometry, only the right-half of the problem is shown.

Fig. 13. B-field contour for the FEM with Air model. The plot is a slice through
the middle of the geometry, only the right-half of the problem is shown.

coaxial rings, flat sheet metal, generic railgun) at four mesh
resolutions each. As each problem was refined the number of
processors was increased to yield a fixed number of mesh ele-
ments per processor. The performance of the hierarchical QR
algorithm for these problems is shown in Figs. 16 and 17. In
Figs. 16 and 17, the QR compressed results are the actual mea-
sured memory usage and CPU time, respectively, whereas the
uncompressed results are theoretical since the memory usage for
the larger problems without QR compression was prohibitive.
There is variation in the results due to differences in geometry
and the number of parallel processors, but the overall conclu-
sion is our algorithm is competitive with other
algorithms.

VII. CONCLUSION

A novel numerical method for the multiply connected tran-
sient eddy-current problem has been derived, implemented, and

Fig. 14. Time-history plot of the currents for the coaxial ring problem. The
solid line denotes the computed solution using the FEM With Air, the glyphs
denote the computed solution using the Biot–Savart law. The top curves are for
the total current at a point in the middle conductor, the bottom curves are for the
total current at a point in the top conductor.

Fig. 15. Time-history plot of the ~B-field for the coaxial ring problem. The solid
line denotes the computed solution using the FEM With Air, the glyphs denote
the computed solution using the Biot–Savart law. The top curves are for the
~B-field at a point in the middle conductor, the bottom curves are for the ~B-field
at a point in the top conductor.

verified. The algorithm consists of the -conforming fi-
nite-element discretization of the eddy-current PDE, com-
bined with a Biot–Savart law to specify the global boundary
conditions on the conductors. The discrete Biot–Savart law is
represented by a dense matrix that maps volume current to sur-
face fields. This dense matrix is compressed using a hierarchical
low-rank QR compression. The coupled system of equations
is solved implicitly using the iterative GMRES method, and a
scaling is proposed that significantly improves the conditioning
of the system of equations. The numerical method was veri-
fied by comparing to an exact analytical solution for a simple
spherical problem, and by comparing to a traditional finite-ele-
ment method for a more complex problem. The method is very
accurate and reasonably efficient. In our present implementa-
tion there is no motion, and hence the cost of computing the
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Fig. 16. Compression of the hierarchical low-rank QR algorithm. The y-axis
is words, the x-axis is number of volume mesh elements. The axes are on a log
scale. The solid line is is a plot of 50 � N log (N) for comparison.

Fig. 17. Total CPU time for the hierarchical low-rank QR algorithm. This is the
wall clock time (seconds) multiplied by the number of processors used. The axes
are on a log scale. The solid line is is a plot of 0:3 �N log (N) for comparison.

low-rank QR approximation of the Biot–Savart law is amor-
tized over many time steps. For applications involving moving
conductors, further optimization would be required, in partic-
ular the cost of computing the sampled rows and columns of the
Biot–Savart matrix.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. De-
partment of Energy by the University of California, Lawrence
Livermore National Laboratory under Contract No. W-7405-
Eng-48.

REFERENCES

[1] Z. Ren, F. Bouillault, A. Razek, A. Bossavit, and J. C. Verite, “A new
hybrid model using electric field formulation for 3d eddy current prob-
lems,” IEEE Trans. Magn., vol. 26, no. 2, pp. 470–473, Mar. 1990.

[2] Z. Ren and A. Razek, “A new technique for solving three-dimensional
multiply connected eddy current problems,” IEE Proc. A—Sci. Meas.
Technol., vol. 137, no. 3, pp. 135–140, 1990.

[3] P. Bochev, J. Hu, A. Robinson, and R. Tuminaro, “Towards robust
Z-pinch simulations: Discretization and fast solvers for magnetic diffu-
sion in heterogenous conductors,” Electron. Trans. Numer. Anal., vol.
15, pp. 186–210, 2003.

[4] A. Bossavit and J. C. Verite, “The “TRIFOU” code: Solving the 3d
eddy current problems by using H as the state variable,” IEEE Trans.
Magn., vol. MAG-19, no. 6, pp. 2465–2470, Nov. 1983.

[5] A. Bossavit, Computational Electromagnetism: Variational Formula-
tion, Complementarity, Edge Elements. New York: Academic, 1998.

[6] O. Biro and K. Preis, “On the use of the magnetic vector potential in
the finite element analysis of three-dimensional eddy currents,” IEEE
Trans. Magn., vol. 25, no. 4, pp. 3145–3159, Jul. 1989.

[7] O. Biro, K. Preis, W. Renhart, K. Richter, and G. Vrisk, “Performance
of different vector potential formulations in solving multiply connected
eddy current problems,” IEEE Trans. Magn., vol. 26, no. 2, pp. 438–41,
Mar. 1990.

[8] C. Bryant, C. Emson, and C. Trowbridge, “A comparison of Lorentz
gauge formulations in eddy current problems,” IEEE Trans. Magn., vol.
26, no. 2, pp. 430–433, Mar. 1990.

[9] B. Weis and O. Biro, “On the convergence of transient eddy-curent
problems.,” IEEE Trans. Magn., vol. 40, no. 2, pp. 957–960, Mar. 2004.

[10] R. Rieben and D. White, “Verification of high-order mixed finite ele-
ment solution of transient magnetic diffusion problems,” IEEE Trans.
Magn., vol. 42, no. l, pp. 25–39, Jan. 2006.

[11] K. Fujiwara, Y. Okada, T. Nakata, and N. Takahashi, “Improvements
in the T-
 method for 3–D eddy current analysis,” IEEE Trans. Magn.,
vol. 24, pp. 94–97, 1988.

[12] R. Merwa, K. Hollaus, B. Brandstatter, and H. Scharfetter, “Numerical
solution o fthe general 3d eddy current problem for magnetic induction
tomography,” Physiol. Meas., pp. 545–554, 2003.

[13] C. Daveau and M. Menad, “Mixed FEM and BEM coupling for the
three-dimensional magnetostatic problem,” Numer. Meth. Partial Diff.,
2002, Eq. 19.

[14] H. Whitney, Geometric Integration Theory. Princeton, NJ: Princeton
University Press, 1957.

[15] J. C. Néd́lec, “Mixed finite elements in R3.,” Numer. Math., vol. 35,
pp. 315–341, 1980.
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